Quantum dot lasers offer a variety of useful characteristics as light sources in integrated highly parallel data transmission links. These properties include low threshold, high efficiency, resilience to unintentional optical feedback, high reliability, and broad wavelength spectral emission. The combination of these lasers with sophisticated silicon photonics components presents a variety of circuit architectures for highly compact, high bandwidth, and highly efficient photonic transmitters with low power consumption which are fabricated in a low cost and high volume commercial foundry. This presentation will provide an overview of the laser and circuit designs enabled by this platform.